
Machine-Generated Metadata for MSS

Ryan Baumann

Executive Summary

This paper explores and evaluates the potential for various algorithmic and
machine learning approaches to extract key points of metadata from large
collections of digitized images of manuscript letters. In particular, the problems
of image classification/segmentation and image clustering/searching are explored
in-depth, both by applying existing implementations of solutions for these
problems as well as indicating alternate approaches suggested by the scientific
literature for which no existing implementations are readily available.

Overview

The Alexander Stephens and William Wilberforce papers were identified as
potential collections for experimenting with machine-extracted metadata from
manuscript letters. Some potential candidates identified for extraction were:

• signature
• date
• location

All of these problems could be broken down into multiple common steps. These
are:

• classification/segmentation: this is the problem of identifying the region
in any whole image which can be classified as one of the pieces of interest
(signature, date, or location)

• clustering/searching: this is the problem of taking the regions extracted
by classification/segmentation and grouping together “similar” items, or
searching across the whole collection for all occurrences of an extracted
region

So, for example, if we were able to automatically extract every signature from
every image, and accurately cluster together all images of the same signature,
we could potentially cluster entire letters on that basis (and the identification of

1



the person behind any signature cluster would give us writer identification for
the entire associated cluster of letters).

A few different approaches could be taken for document image processing as
well:

• a deep learning based approach, where a network is trained on a variety of
inputs for a given problem

• a “traditional” computer vision approach, where various hand-coded image
features are used to try to solve a specific problem

So, for example, to identify the signatures in the images, a deep learning based
approach might take hundreds or thousands of images which have been manually
labelled with the region of the image containing a signature (and then after
training, be scaled up to extract signatures from many thousands of other images
it has never seen before), where a “traditional” computer vision approach might
involve designing an algorithm which says something like “after segmenting lines
and clustering connected components, identify the signature as the bottom-right
connected component”.

In order of decreasing time/resource requirements:

• developing a custom deep learning or “traditional” computer vision imple-
mentation from scratch

• training an existing deep learning implementation on a custom
dataset/problem, or slightly modifying an existing “traditional” implenta-
tion

• using an existing implementation (and pre-trained network)

There are a few difficulties with applying existing approaches to handwritten
documents. For both deep learning and traditional approaches, many papers are
published with promising results for various parts of the problems we face, with
no implementations published alongside them, putting them in the most time-
intensive category. A second issue is that many deep learning approaches are
currently focused on photographs and images, so a majority of the existing open
approaches and pre-trained networks are geared towards problems in that domain
and may not perform as well for handwritten documents without customization.

Classification/Segmentation

Generating Training Data

Out of the 11,348 total images in the input data (the Stephens and Wilberforce
papers combined), 200 images were selected at random to use for manual
segmentation and initial training set creation. These images were then manually
tagged for “signature”, “date”, and “location” using the Microsoft Visual Object

2

https://github.com/Microsoft/VoTT
https://github.com/Microsoft/VoTT


Tagging Tool. In the tagging process, a number of issues arose while attempting
to tag the data:

• multiple signatures: sometimes a letter would have multiple distinct signa-
tures, or be signed by one person on behalf of multiple people

• data disparity: “letters” vs. “envelopes” are very disparate in the placement
and character of each of the tagged fields. Due to the anticipated poor
outcome of trying to train segmentation for both classes of image on such
a small sample size, I decided to segment only the “letters”. Likely a better
approach would be to pick out just “letters” for initial tagging/training.
There’s also some potential concern that the relative sizes of the two
combined collections will bias the classifier toward performing better on
the collection with more data - the Stephens papers made up 8,648 images
of the total collection while the Wilberforce papers contained only 2,700
images

Because of the data disparity issue and the need to split training data into
train/test sets for training, out of the original 200 randomly-selected images only
100 were used as training inputs with labels. Increasing this training dataset
would likely increase the accuracy of results.

Generating a Trained Classifier

Because I’d successfully experimented with using it for other classifica-
tion/segmentation tasks in the past, I originally wanted to try using dhSegment
for the segmentation task. This is a deep-learning-approach-based tool
developed out of the EPFL DHLAB which uses a pre-initialized residual network
(ResNet-50) to reduce the training requirements and improve performance.

However, the input expected by dhSegment didn’t match any of the export
formats supported by VoTT, and I would have had to write a custom program
to transform the manually labeled data into the expected format. Fortunately,
VoTT supports exporting to a variety of formats directly supported by other
state-of-the-art image classifiers.

Ultimately, I decided to use “You Only Look Once” (a.k.a. YOLO), because it sup-
ports whole-image classification (rather than neighborhood classification, which
breaks each input image into subregions before attempting classification–the
relative position of objects to the whole image is important for our classification
problem) and uses a residual network training approach similar to dhSegment
to reduce the training overhead.

The general recommendation for training YOLO is that you’ll begin to see good
results at (2,000 * number of classes) training iterations. Since we’re training on
3 classes (signature, date, location), we’d need at least 6,000 iterations. Starting
the training on my iMac with a GTX 780M GPU, I was able to train around
1,000 iterations in 24 hours - so a full initial training would take around a week.

3

https://github.com/Microsoft/VoTT
https://github.com/Microsoft/VoTT
https://github.com/dhlab-epfl/dhSegment
https://pjreddie.com/darknet/yolo/


After moving the training to a cloud computing instance with two GTX 1080
GPUs, I was able to complete another 16,000 training iterations in around 6
hours.

Using the Trained Classifier

Once I had enough training iterations that I was comfortable I could start to see
some results, I halted the training process (which can be run indefinitely, though
this will result in “overfitting” the training data - i.e. the classifier will perform
perfectly on images it has already seen, but poorly on images it has never seen).
After spot-checking the classifier on some images, I was able to run the classifier
across the entire dataset locally (with a GTX 780M) in around 30 minutes. For
each image, this gave me bounding boxes and associated confidence levels for all
three classes of detected objects (see Figures 1 & 2).

I then wrote a small script to take these results and output the cropped region
corresponding to the highest confidence level for each class of object for each
image. So every image with any detected object above a 0% confidence level
would have the highest-confidence object output, which could then be used for
clustering. Since not every image actually has all three classes of object, this
poses another challenge, which is determining the best place to set the confidence
threshold - in some cases the top-rated object for a given class may have a
confidence of less than 1% (but greater than 0%), for example. Sometimes these
can be valid objects in the given class, but at e.g. the <1% confidence range
many of these objects will be incorrect.

For each of the following downstream classification and searching tasks, I didn’t
apply any such confidence thresholding, aside from the initial >0% confidence
threshold. For a production system with a more robustly trained classifier,
stricter thresholding may be desirable (see Figures 3-5).

One surprising result was that despite not training on envelope data, and the
relatively small training set, the classifier was still able to correctly classify fields
from envelopes correctly in some instances (Figure 6).

Clustering/Searching

Clustering

A few different existing implementations were experimented with for clustering
the images:

• PixPlot, from the Yale DH Lab, computes feature vectors using a model
trained on ImageNet called “Inception”. This is a visual recognition model
trained for classifying entire images from a large photographic image

4

https://github.com/YaleDHLab/pix-plot


Figure 1: An example of correctly classified features in context

5



Figure 2: An example of a date incorrectly classified as an additional signature
due to positioning

6



Figure 3: A sample of signatures extracted by the trained classifier

7



Figure 4: A sample of locations extracted by the trained classifier

8



Figure 5: A sample of dates extracted by the trained classifier

database (over 14 million images) into one of 1,000 classes (“like ‘Zebra’,
‘Dalmation’, and ‘Dishwasher’ ”) (see Figures 7 & 8 for example output).

• imagecluster, which uses the VGG16 model (similar to Inception and
also trained for the ImageNet task), with hierarchical clustering of the
resulting features (see Figures 9 & 10 for example output).

For both of these clustering approaches, I experimented with clustering both the
entire uncropped image sets, as well as the dataset of auto-extracted cropped
signatures from the classification process described above. In general, likely due
to the image/photographic focus of the trained model used for computing feature
vectors, these clustering processes were able to do well at clustering e.g. handwrit-
ten vs. typed (see Figures 7 & 8), or shared graphical features across letters (see
Figure 9). A surprising instance of the latter was the imagecluster clustering
process using shared rips and folds in the images to cluster together a multi-page
letter which had consistent rips and folds across its pages (see Figure 10). While
in this case the individual pages were still catalogued together, the clustering
process did not have access to this metadata, and still managed to cluster the
pages together based on the visual features alone - which may be a promising
approach for other materials with poorer cataloguing. In many cases, these sorts
of visual clustering algorithms could be used to preprocess the dataset or assist
manual application of broad metadata fields, e.g. by classifying typewritten or
photographed materials or excluding them from further handwriting processing.

9

https://github.com/elcorto/imagecluster


Figure 6: An example of the classifier correctly detecting a date on an envelope

Figure 7: PixPlot clustering of extracted signatures

10



Figure 8: Zoomed view of the “typeset” outlier cluster of extracted signatures in
PixPlot

Figure 9: Checks clustered together by imagecluster

11



Figure 10: Pages of a letter clustered together by imagecluster on the basis of
consistent rips

12



Another option for clustering I came across would be to directly use intermediate
feature vectors from our own trained classifier to try to do the clustering.
Because these are the feature vectors our own classifier is using internally to
distinguish among signature, date, location, and other text, the features are
likely to correspond strongly to features that we’d be interested in for clustering.
Unfortunately, while this may this may yield better results, it would also require
a fair amount of custom code.

Searching

Another approach would be to use a “reverse image search” on cropped regions
with a database of all the images. This would seem to have potential to work
well with unique signatures - finding all instances of a given signature in the
image database. Reverse image search can be implemented in a number of
ways, depending on what you want to find for a given query image (for example,
a reverse image search algorithm focused on finding people in an image set
might use face detection/recognition, which would be a poor fit for many other
tasks). For our task, an image search algorithm based on “traditional” geometric
computer vision features would seem to be a good fit. That is, for a given input
image, we want to compute feature descriptors based on areas of contrast in
the image, where the feature descriptors are robust to scale, rotation, and affine
transformation (see Figure 11), so that we can match query images which are
similar but not exact (e.g. a signature, and a slightly larger/rotated version of
the same signature).

Figure 11: An example of “traditional” geometric Scale-Invariant Feature Trans-
form (SIFT) feature descriptors being matched across two images

A few different existing reverse image search implementations were experimented
with:

• Pastec Image Search: I had used this reverse image search engine with
success previously for matching large collections of images from the Ri-

13

http://pastec.io/


jksmueum and New York Public Library. Since it uses traditional geometric
features, I thought it might potentially work well for matching our ex-
tracted signatures. Unfortunately, while in many cases it was able to match
a query signature to itself, the few instances where it was able to turn
up multiple matches for a query image were usually erroneous (i.e. an
unrelated extracted signature, which the engine had decided was “similar”
based on its internal metric).

• “Match” reverse image search: another open-source reverse image search
engine which used traditional geometric features for matching. Results
for the extracted signature matching task were, unfortunately, similar to
Pastec as described above (extracted signatures were easily able to be
matched to themselves, but the few instances of multiple matches were
usually erroneous).

• VGG Image Search Engine (VISE): the indexing process for this engine is
extremely slow for large datasets, and whenever I attempted to index the full
dataset of cropped signatures the program would eventually crash during
indexing. By restricting the indexing to only signatures with a confidence
>=50% (1,890 images), I was eventually able to successfully complete
indexing and test some searches. While searching was very fast, I was
only able to obtain one correct signature match in my experiments (Figure
12). After further investigation, a major upgrade of this search engine is
currently in beta, which aims to provide faster indexing, larger dataset
handling, and a REST API (which would make exhaustive/systematic
investigation of search results much easier). While the “beta” status of
this update made it too time-consuming to trial for this experiment, it
may be something worth revisiting in the future.

• Lucene Image Retrieval (LIRE): implements a variety of image indexing
and retrieval methods, backed by Lucene. Out of all the reverse image
search engines tried, this seemed to have the best results. After indexing
the full set of extracted signatures, I was in some cases able to find other
instances of the same query signature with different methods (Figure
13). A more methodical approach to determining the best methods (and
combining the results, as in some cases one method will find a signature
not found by another method and vice-versa) may yield more consistent
and promising results.

There were also some other open-source reverse image search implmentations
which I attempted to use but was unable to due to various difficulties:

• “Deep Video Analytics”: advertises itself as providing a variety of options
for indexing and searching video and images. Unfortunately, while I was
able to get it running superficially, I encountered an error whenever I
attempted to index images.

• Kitware KWIVER: required complicated build dependencies, which re-
sulted in errors when trying to compile.

14

https://github.com/dsys/match
https://gitlab.com/vgg/vise/tree/master
http://www.lire-project.net/
https://github.com/AKSHAYUBHAT/DeepVideoAnalytics
https://github.com/Kitware/kwiver


Figure 12: The successful match found in VISE, which allows more detailed
examination of matches

Other Approaches & Techniques

Other techniques such as HTR (Handwritten Text Recognition, essentially OCR
for handwriting) are emerging, however, these generally must be trained per-hand
and currently have relatively steep training requirements. The HTR platform
Transkribus, for example, requires 15,000 words of transcribed handwritten text
to start training a usable model.

A related approach (which some HTR approaches may rely on) which may have
some promise would be to train a Convolutional Recurrent Neural Network
(CRNN) for text recognition only on extracted dates or locations (see Figure 14).
A potential advantage of this approach is that it can also be trained or used in a
“lexicon-based” mode, so dates for example could be restricted to a date lexicon
consisting only of the possible date strings that might occur in a collection in
order to improve accuracy.

Another technique I initially thought I could use to process the data is “Word-
Spotting”. This is a technique which enables searching for words in sets of images
by using image feature matching; a query against the image database is run
using a feature set generated either by a query image (i.e. a cropped date or
signature) or by generating a synthetic feature set from a text string (i.e. “Aug
4 1887” is transformed into the approximate expected image features, sometimes
by first generating a synthetic image in the appropriate script and hand). My

15

https://transkribus.eu/
https://github.com/bgshih/crnn
https://github.com/bgshih/crnn


Figure 13: An example of a LIRE query retrieving multiple matching signatures
(as well as some incorrect matches). The query image is exactly matched in the
top-left

Figure 14: An example of a CRNN performing difficult text recognition tasks

16



expectation was this could work well for signature matching by image query -
other fields may have more variance in hand, but individual signatures would
likely be relatively regular in terms of their image features, so that by selecting an
individual signature in one letter you could query the entire image set for all other
appearances of that signature. The difficulty with this approach was simply that
despite the large number of papers describing various word-spotting approaches,
I wasn’t able to find much in the way of existing open-source implementations.
This also reduces word-spotting to essentially the reverse image search approach
described above, just with features tuned to handwriting.

Conclusions

An interesting result from all these experiments is that my intuition going into
this was that the clustering/searching would be the “easy” part of the prob-
lem (since it relied on more traditional computer vision methods), while the
classification/segmentation would be the “hard” part (since it relied on more
cutting-edge experimental deep learning methods, and could require a large
amount of training data). The results instead seem to bear out the opposite:
while increasing the training set size and customizing/improving the training con-
figuration could likely go a long way toward improving accuracy/confidence, the
classification/segmentation approach used yielded much more promising initial
results. These could be used to further and better define the clustering/searching
problem, or could even be used to reduce manual labor or increase discovery
absent this problem being solved (e.g. displaying auto-extracted signature, date,
and location images alongside a record for viewing or transcription).

Next Steps

As discussed in the overview, the potential solutions to these problems lie along
a spectrum of difficulties: while it’s possible to assemble existing solutions and
obtain some easy results, much better results may be available by investing in
the development of customized solutions for the specific problems posed by the
data. In the case of handwritten letters, while there’s a relatively large amount
of published research for image processing approaches to various parts of these
problems, there’s far less in the way of published implementations. This may
point to a need for development in this area. Of course, this need must be
balanced with the potential reward, but the potential for this extends far beyond
just the letters chosen for this pilot project: one can easily imagine a platform
for processing handwritten letters more generally which would be of use for a
vast array of collections, both those already digitized but also those deemed
too daunting for digitization with the present state of tools and capacities for
processing.

17


	Executive Summary
	Overview
	Classification/Segmentation
	Generating Training Data
	Generating a Trained Classifier
	Using the Trained Classifier

	Clustering/Searching
	Clustering
	Searching

	Other Approaches & Techniques
	Conclusions
	Next Steps

